

Situazione di apprendimento "Progettazione, messa in servizio e gestione di un impianto solare termico"

In questo modulo di apprendimento si pianifica l'installazione e la messa in funzione di un impianto solare termico per la fornitura di calore efficiente dal punto di vista energetico di un nuovo edificio residenziale e si elaborano modelli di guasto comuni ed esemplari degli impianti solari termici.

Per risolvere i problemi descritti nei moduli sono richieste competenze derivanti da diverse professioni. Per completare con successo il modulo di apprendimento, sono richieste competenze provenienti da diverse professioni. Per questo motivo, le competenze tradizionali di un mestiere vengono integrate da competenze provenienti da altri mestieri.

Il modulo di apprendimento è suddiviso in un modulo principale e due sottomoduli opzionali al fine di raggiungere le competenze mirate e sviluppare i contenuti tecnici. Ogni modulo prevede un compito, suddiviso in diverse sottoattività a cui gli studenti lavorano nell'arco di diverse ore.

I moduli di apprendimento sono organizzati come segue:

Modulo principale:

"Progettazione e messa in funzione di un impianto solare termico"

Contenuto:


- Componenti meccanici ed elettrici e funzioni dell'impianto solare termico
- Realizzazione di uno schema funzionale dei componenti meccanici ed elettrici dell'impianto solare termico

Tempo: circa 6 ore

Livello: EQF 4

Nel modulo principale vengono perseguiti i seguenti obiettivi didattici:

- Familiarizzazione con le interfacce tra i mestieri.
- Comprendere gli elementi meccanici ed elettrici più importanti di un impianto solare termico e le loro funzioni.
- Scopri come visualizzare in modo professionale un impianto solare termico (elettrico e meccanico) e analizzare la documentazione del produttore.
- Selezione del cavo di collegamento (numero di fili, tipi di cavo se necessario)

Messa in servizio finale dell'impianto solare termico	pianto solare termico Risoluzione dei problemi e dei conflitti sull'impianto sola	
	termico	
Contenuto:	Contenuto:	
- Controllo dei dispositivi di sicurezza elettrica (RCD, MCB)	- Problema 1: Pompa solare bloccata a causa della corrosione	
- Prova di funzionamento dell'impianto solare termico mediante prova	- Problema 2: mancanza di riscaldamento del sistema	
dell'attuatore e prova di funzionamento	- Problema 3: Guasto nell'alimentatore	
Tempo: circa 4 ore	Tempo: circa <mark>14</mark> ore	
EQF 4	EQF 4	
Inserisci collegamento al sottomodulo	Inserisci collegamento al sottomodulo	

Sequenza di	Descrizione e materiale	Come si usa?
insegnamento	Breve descrizione e link a PDF/strumenti digitali/ecc.	Spiegazioni metodiche e didattiche (circa 10 frasi come
Moduli principali		primo orientamento)
		+ link ad ulteriore documentazione, se applicabile
		(PDF)
Scenario introduttivo	Introduzione della situazione di apprendimento principale	✓ Questa situazione di apprendimento è rivolta agli
	(ad esempio)	elettricisti o alle classi miste di elettricisti e idraulici.
	Vi è stato affidato l'incarico di garantire la fornitura di acqua	✓ Gli studenti sono divisi in gruppi interdisciplinari in
	calda sanitaria a un edificio residenziale in una zona isolata,	cui lavorano insieme. Se idraulici ed elettricisti sono
	utilizzando un impianto solare termico. Un installatore e un	nella stessa classe, hanno l'opportunità di imparare
	elettricista vengono inviati sul posto per l'installazione.	gli uni dagli altri.
	L'edificio è già dotato di un impianto fotovoltaico che	✓ Se non è possibile combinare i due mestieri, è
	garantisce un'alimentazione elettrica affidabile. L'acqua	possibile insegnarli anche separatamente,

potabile viene prelevata da un pozzo domestico alimentato da acqua di sorgente.

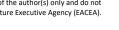
Il loro compito è pianificare l'installazione dell'impianto solare termico e metterlo in funzione dopo l'installazione.

mettendo a disposizione il materiale informativo dell'altro mestiere.

- ✓ Conoscenze meccaniche pregresse:
- Conoscenza meccanica di base dei componenti idraulici (tubi, pompe, ecc.)
- Conoscenza di base della trasmissione del calore (irradiazione, conduzione)
- Conoscenze di base di idraulica (trasporto del fluido termovettore tramite pompa)
- ✓ Conoscenze elettriche di base:
- Conoscenza di base dei dispositivi di sicurezza elettrica (MCB, RCD)
- Conoscenza di base del collegamento dei componenti elettrici (sensori, pompe, centralina...)

Link: "1.3 Modulo principale - Ordine solare termico"

Procedura:



		1) L'insegnante presenta la situazione e organizza i
		gruppi.
		2) Nei loro gruppi, gli studenti riflettono su come
		verrà elaborato il compito e sviluppano un'idea
		iniziale della portata del compito.
		3) Raccolta di idee in plenaria e accordo su un
		approccio comune nonché sulla qualità e la
		portata del prodotto da realizzare (diagrammi
		funzionali).
Compiti	Procedura:	✓ L'obiettivo è quello di creare autonomamente uno
	1) Informazioni sulla funzione e la struttura di un impianto	schema funzionale con i componenti elettrici e
	solare termico	meccanici all'interno dei singoli gruppi.
	Durata: 0.75h	✓ Gli studenti si informano utilizzando il materiale
	2) Esame della documentazione operativa dell'impianto	informativo fornito e la letteratura specializzata sui
	solare termico e dei manuali di riferimento. Selezione e	vari mestieri.
	compilazione delle informazioni richieste da parte dei	✓ L'insegnante è disponibile a rispondere a domande
	tirocinanti.	e a fornire supporto durante la fase di lavoro

Durata: 0.75h

 Creazione di uno schema di sintesi in cui i componenti meccanici ed elettrici di base sono rappresentati in modo professionale

Durata: 0,5 ore

4) Calcolo del carico elettrico collegato e selezione dei dispositivi di sicurezza adeguati (RCD, interruttore automatico)

Durata: 0,5 ore

- individuale. Eventuali domande vengono discusse all'interno dei gruppi e gli studenti si supportano a vicenda, soprattutto per quanto riguarda le domande specifiche per materia.
- ✓ Lo schema funzionale è una visualizzazione dei componenti dell'impianto solare termico e dei relativi collegamenti elettrici e meccanici (funzionali). Nella creazione dello schema è necessario utilizzare la simbologia standard utilizzata nella comunicazione tecnica.
- ✓ I singoli gruppi sviluppano prodotti specifici. Questi dovrebbero contenere i componenti di base dell'impianto solare termico, come collettore, pompe solari, sensore del collettore, serbatoio di accumulo e componenti elettrici.
- ✓ Uno schizzo è sufficiente per la presentazione se durante la lezione non vengono perseguiti ulteriori

obiettivi riguardanti la corretta

presentazione/creazione di diagrammi funzionali.

In gruppi di apprendimento più numerosi, gli
studenti possono abbozzare i diagrammi dell'altra
materia. In questa fase, gli studenti si scambiano
suggerimenti e consigli per una presentazione
corretta e significativa del diagramma funzionale.

- ✓ Come materiale informativo, si consiglia di utilizzare manuali di riferimento standard e la documentazione del produttore per la rispettiva regione e nazione. In questo modo, è possibile tenere conto delle differenze regionali nei vari metodi di costruzione dell'impianto solare termico (con/senza protezione antigelo; con/senza integrazione del riscaldamento centralizzato).
- ✓ Una possibile soluzione può essere trovata al seguente link:

		✓ Sinistra:
		- 1.1 Modulo principale - ordine solare termico
		- 1.2 Modulo principale - ordine solare termico
		Orizzonte delle aspettative
Presentazione e	5) I gruppi si presentano reciprocamente i propri prodotti, li	Riguardo 5)
	integrano e/o li correggono secondo necessità e	✓ Se i gruppi vengono divisi per confrontare i
	concordano un diagramma di sistema congiunto o	prodotti, metà del gruppo passa a un altro gruppo e
	corretto. Eventuali dubbi o ambiguità vengono individuati	presenta i propri prodotti ai nuovi membri.
	e documentati.	✔ Per la valutazione, ai nuovi gruppi viene fornita una
	Durata: 0.75h	checklist con criteri di valutazione, in base ai quali
	6) Se necessario, i singoli gruppi presentano i loro prodotti	vengono valutati i prodotti degli altri gruppi.
	per la discussione in plenaria.	Questo consente agli studenti di controllare i
	Durata: 0,5 ore	prodotti e fornire un feedback sulla qualità e la
	7) Raccolta di possibili domande, discrepanze e/o argomenti	completezza dei prodotti sulla base dei criteri.
	aggiuntivi dalla fase 5) in una memoria tematica.	✓ Questo offre agli studenti l'opportunità di verificare
	Durata: 0,25 ore	i propri progressi di apprendimento e di correggere

Riflessione/valutazion e	8) Nel dialogo tra studenti e docenti, gli studenti raccolgono le possibili problematiche emerse nelle fasi precedenti della situazione di apprendimento. Vengono inoltre discusse le interfacce e i limiti prestazionali tra le diverse professionalità, in relazione agli obiettivi della situazione di apprendimento sopra menzionati. Durata: 0,5 ore	i prodotti dei nuovi membri del gruppo (dopo il cambio). Questo aiuta gli studenti più deboli a presentare i propri prodotti in un piccolo gruppo "protetto" e a confrontarli con quelli degli altri. Questo dà loro la sicurezza di presentare i propri prodotti all'intero gruppo nella fase successiva. Sinistra: - 1.3 Modulo principale - Lista di controllo dei criteri Valutazione del prodotto Riguardo al 9) Lavorando individualmente e ripensando ai contenuti precedenti, gli studenti creano una descrizione funzionale dell'impianto solare termico. Questa fase consente agli studenti di rivedere i propri progressi di apprendimento e di colmare eventuali lacune nelle loro conoscenze.
-----------------------------	--	--

Co-funded by

9) Per riflettere sul proprio livello di conoscenza, gli studenti creano una descrizione funzionale utilizzando i componenti più importanti del sistema solare termico. Durata: 1,5 ore

Gli studenti possono coordinarsi silenziosamente con gli altri studenti oppure rivolgersi all'insegnante.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Co-funded by

Situazione di apprendimento "Progettazione, installazione e messa in servizio di un impianto solare termico"

Fonte: fobizz generato dall'intelligenza artificiale

Modulo principale: Progettazione dell'impianto solare termico

Scenario iniziale

Vi è stato affidato l'incarico di garantire la fornitura di acqua calda sanitaria a un edificio residenziale in una zona isolata, utilizzando un impianto solare termico. Un installatore e un elettricista vengono inviati sul posto per l'installazione.

L'edificio è già dotato di un impianto fotovoltaico che garantisce un'alimentazione elettrica affidabile. L'acqua potabile viene prelevata da un pozzo domestico alimentato da acqua di sorgente.

Il loro compito è pianificare l'installazione dell'impianto solare termico e metterlo in funzione dopo l'installazione.

Ordine 1.1)

Informatevi sui componenti, sulla loro struttura e sul loro funzionamento dell'impianto solare termico. Consultate a questo proposito la documentazione di prodotto dei (più comuni) produttori.

Ordine 1.2)

In preparazione alla pianificazione dell'installazione dell'impianto solare termico, creare uno schema professionale in cui siano evidenziati i seguenti punti:

- i componenti più importanti dell'impianto solare termico.
- Etichettatura dei dati di collegamento elettrico, come potenza, tensione e amperaggio, nonché il numero di conduttori elettrici necessari

Ordine 1.3)

Per la protezione elettrica, selezionare componenti adatti per la distribuzione elettrica principale della casa vacanze.

Situazione di apprendimento

"Progettazione, installazione e messa in servizio di un impianto solare termico"

Fonte: fobizz generato dall'intelligenza artificiale

Modulo principale: Progettazione dell'impianto solare termico

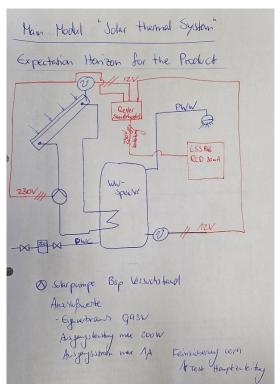
Scenario iniziale

Vi è stato affidato l'incarico di garantire la fornitura di acqua calda sanitaria a un edificio residenziale in una zona isolata, utilizzando un impianto solare termico. Un installatore e un elettricista vengono inviati sul posto per l'installazione.

L'edificio è già dotato di un impianto fotovoltaico che garantisce un'alimentazione elettrica affidabile. L'acqua potabile viene prelevata da un pozzo domestico alimentato da acqua di sorgente.

Il loro compito è pianificare l'installazione dell'impianto solare termico e metterlo in funzione dopo l'installazione.

Ordine 1.1)


Informatevi sui componenti, sulla loro struttura e sul loro funzionamento dell'impianto solare termico. Consultate a questo proposito la documentazione di prodotto dei (più comuni) produttori.

Ordine 1.2)

In preparazione alla pianificazione dell'installazione dell'impianto solare termico, creare uno schema professionale in cui siano evidenziati i seguenti punti:

- i componenti più importanti dell'impianto solare termico.
- Etichettatura dei dati di collegamento elettrico, come potenza, tensione e amperaggio, nonché il numero di conduttori elettrici necessari

Possibile soluzione dell'orizzonte degli studenti/aspettative:

Ordine 1.3)

Per la protezione elettrica, selezionare componenti adatti per la distribuzione elettrica principale della casa vacanze.

Possibile soluzione:Interruttore automatico B10A o B16A a seconda della sezione del cavo di collegamento; RCD con 30 mA

Modulo principale: Progettazione dell'impianto solare termico

Fonte: fobizz generato dall'intelligenza artificiale

Criteri di valutazione dei prodotti

Criterio	Soddisf atto	Non soddisf atto
Componenti mostrati dell'impianto solare termico:		
- Pompa solare nel tubo di alimentazione al collettore		
- Collettore con tubo di mandata e ritorno		
 Serbatoio di acqua calda con scambiatore di calore solare 		
 Sensore di temperatura sul collettore (sonda del collettore) 		
 Sensore di temperatura nella parte inferiore del serbatoio dell'acqua calda 		
- Modulo/regolatore di controllo solare		
Cavi di collegamento elettrico dal modulo di controllo solare		

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Co-funded by

per pompa solare, 3 fili, 230V	
al modulo di controllo solare, 3 fili 230V	
al sensore del collettore, 2 fili, 12V	
al sensore del serbatoio di accumulo, 2 fili, 12V	
Altri criteri	
- Tutti i componenti sono chiaramente esposti	
- Schizzo pulito	

Co-funded by the European Union

Sottomodulo 1: Test di integrazione finale e messa in servizio --> Il ruolo dell'elettricista/idraulico e coordinamento del flusso di lavoro

In questo modulo didattico si pianifica l'installazione e la messa in funzione di un impianto solare termico per la fornitura di calore efficiente dal punto di vista energetico di un nuovo edificio residenziale e si elaborano modelli di guasto comuni ed esemplari degli impianti solari termici.

Per risolvere i problemi descritti nei moduli sono richieste competenze derivanti da diverse professioni. Per completare con successo il modulo di apprendimento, sono richieste competenze provenienti da diverse professioni. Per questo motivo, le competenze tradizionali di un mestiere vengono integrate da competenze provenienti da altri mestieri.

Il modulo di apprendimento è suddiviso in un modulo principale e due sottomoduli opzionali al fine di raggiungere le competenze mirate e sviluppare i contenuti tecnici. Ogni modulo prevede un compito, suddiviso in diverse sottoattività a cui gli studenti lavorano nell'arco di diverse ore.

I moduli di apprendimento sono organizzati come segue:

Modulo principale:

"Progettazione e messa in funzione di un impianto solare termico"

Contenuto:

- Componenti meccanici ed elettrici e funzioni dell'impianto solare termico
- Realizzazione di uno schema funzionale dei componenti meccanici ed elettrici dell'impianto solare termico

Tempo: circa 6 ore

Livello: EQF 4

Nel modulo principale vengono perseguiti i seguenti obiettivi didattici:

- Familiarizzazione con le interfacce tra i mestieri.
- Comprendere gli elementi meccanici ed elettrici più importanti di un impianto solare termico e le loro funzioni.
- Scopri come visualizzare in modo professionale un impianto solare termico (elettrico e meccanico) e analizzare la documentazione del produttore.
- Selezione del cavo di collegamento (numero di fili, tipi di cavo se necessario)

Sottomodulo 1: Messa in servizio finale dell'impianto solare termico	Sottomodulo 2: Risoluzione dei problemi e dei conflitti sull'impianto solare termico
Contenuto: - Controllo dei dispositivi di sicurezza elettrica (RCD, MCB) - Prova di funzionamento dell'impianto solare termico mediante prova dell'attuatore e prova di funzionamento	Contenuto: - Problema 1: Pompa solare bloccata a causa della corrosione - Problema 2: mancanza di riscaldamento del sistema - Problema 3: Guasto nell'alimentatore

Tempo: circa 4 ore Tempo: circa14ore

EQF 4

Inserisci collegamento al sottomodulo

Sequenza di	Descrizione e materiale	Come si usa?
insegnamento	Breve descrizione e link a PDF/strumenti digitali/ecc.	Spiegazioni metodiche e didattiche (circa 10 frasi
		come primo orientamento)
		+ link ad ulteriore documentazione, se applicabile
		(PDF)
Scenario introduttivo	Introduzione della situazione di apprendimento (ad	- Questa situazione di apprendimento è rivolta agli
	esempio)	elettricisti o alle classi miste di elettricisti e
	Nel frattempo l'impianto solare è stato completamente	idraulici.
	installato; ora mancano solo la messa in funzione finale e il	- Gli studenti sono divisi in gruppi interdisciplinari in
	collaudo elettrico.	cui lavorano insieme. Se idraulici ed elettricisti
	Crea una lista di controllo dellavori da eseguire e gli strumenti	sono nella stessa classe, hanno l'opportunità di
	necessari. Utilizzare la documentazione tecnica disponibile	imparare gli uni dagli altri.

per l'impianto solare termico e la documentazione del proprio specialista per informazioni.

Durata: 0,5 ore

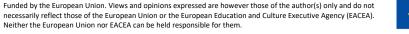
- Se non è possibile combinare i due mestieri, è
 possibile insegnarli anche separatamente,
 mettendo a disposizione il materiale informativo
 dell'altro mestiere.
- Conoscenze pregresse:
 Contenuti didattici del modulo principale
 "Progettazione e messa in servizio di un impianto solare termico"

Link: "2.1 Sottomodulo - Ordine di messa in servizio"

Procedura:

- L'insegnante presenta la situazione e organizza i gruppi.
- Nei loro gruppi, gli studenti considerano come verrà elaborato il compito e sviluppano un'idea iniziale della portata del compito

21



		3) Raccolta di idee in plenaria e accordo su un
		approccio comune nonché sulla qualità e la
		portata del prodotto da realizzare (checklist).
Compiti	Procedura:	- L'obiettivo di questa fase didattica è che i singoli
	1) Esame della documentazione operativa dell'impianto	gruppi creino autonomamente la checklist.
	solare termico e dei manuali di riferimento. Selezione e	- Gli studenti si informano utilizzando il materiale
	compilazione delle informazioni richieste da parte dei	informativo fornito e la letteratura specializzata
	tirocinanti.	sui vari mestieri.
	Durata: 1,0h	- L'insegnante è disponibile a rispondere a domande
	2) Creare una tabella (lista di controllo) o inserire le	e a fornire supporto durante la fase di lavoro
	informazioni del passaggio 1) e determinare la sequenza	individuale. Eventuali domande vengono discusse
	delle fasi di lavoro.	all'interno dei gruppi e gli studenti si supportano a
	Durata: 0,5 ore	vicenda, soprattutto per quanto riguarda le
		domande specifiche per materia.
		- La checklist da creare è una panoramica dei
		passaggi necessari per la messa in servizio elettrica
		dell'impianto solare termico. L'elenco dovrebbe

essere utilizzato anche per definire i limiti
prestazionali dei vari settori, ma anche le possibili
interfacce tra di essi.

- I singoli prodotti vengono sviluppati nei singoli
gruppi. Questi devono mostrare le fasi di lavoro
più importanti, gli strumenti e l'assegnazione delle
fasi di lavoro del rispettivo settore.

- Gli apprendisti dei due mestieri collaborano per
creare la lista di controllo e stabiliscono insieme
una sequenza sensata di attività.

- Come materiale informativo, si consiglia di
utilizzare manuali di riferimento standard e
documentazione del produttore, nonché

normative e standard di legge vigenti nella

rispettiva regione e nazione. In questo modo, è

possibile tenere conto delle differenze regionali

nelle diverse configurazioni dell'impianto solare

		te	ermico (con/senza protezione antigelo; con/senza
		in	ntegrazione del riscaldamento centralizzato) per
		qı	uanto riguarda la messa in servizio elettrica
		de	ell'impianto.
		- U	na possibile soluzione può essere trovata al
		se	eguente link:
		- Si	inistra:
		-	2.1 Sottomodulo - Messa in servizio
			Aspettative di messa in servizio
Presentazione	3) Un gruppo presenta i propri prodotti in plenaria,		
	proiettandoli sulla lavagna. Gli altri gruppi forniscono		
	feedback orientati ai punti di forza e formulano		
	congiuntamente suggerimenti per il miglioramento.		
	Durata: 0,5 ore		
	4) Gli studenti tornano nei gruppi e completano e		
	correggono le liste di controllo come richiesto		
	Durata: 0,5 ore		

Co-funded by

Valutazione	5) I prodotti vengono raccolti e valutati dall'insegnante.	a 5)
		Il criterio più importante per la valutazione è la
		sequenza sensata delle fasi di lavoro e la suddivisione
		dei compiti tra le due professioni.
Riflessione/valutazion	6) Gli studenti stilano una lista di controllo congiunta in	
e	plenaria durante una discussione tra studenti e insegnanti.	
	Vengono discusse e soppesate le possibili differenze, i	
	vantaggi e gli svantaggi dei diversi approcci.	
	Durata: 1,0h	
	7) Chiarimento delle domande rimanenti	
	8) Accordo sui passaggi più importanti per la messa in	
	funzione definitiva di un impianto solare termico con	
	chiarimento delle responsabilità (chi è autorizzato a fare	
	cosa?)	
	Durata: 0,5 ore	

Sottomodulo 1: messa in servizio finale dell'impianto solare termico

Fonte: fobizz generato dall'intelligenza artificiale

Scenario iniziale

L'impianto solare è ormai completamente installato e non resta che la messa in funzione finale e il controllo elettrico.

Crea una checklist delle attività da svolgere e degli strumenti necessari. Utilizza la documentazione tecnica esistente dell'impianto solare termico e i materiali specifici come riferimento.

Ordine 2.1)

Informatevi sulle misure necessarie per il collaudo elettrico dell'impianto solare termico. Limitatevi al collaudo metrologico dell'interruttore magnetotermico e dell'interruttore differenziale.

Ordine 2.2)

Creare una checklist utilizzabile per la messa in servizio di un impianto solare termico. La checklist deve indicare chiaramente l'ordine in cui devono essere eseguite le singole fasi di lavoro. Deve inoltre indicare chi è autorizzato a eseguire la misurazione e quali qualifiche deve possedere la persona incaricata.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA).

 $This work is licensed under a \underline{Creative\ Commons\ Attribution\ -Share\ Alike\ 4.0\ International\ Licence.}$

Co-funded by

the European Union

27--

Sottomodulo 1: messa in servizio finale dell'impianto solare termico

Fonte: fobizz generato dall'intelligenza artificiale

Scenario iniziale

L'impianto solare è ormai completamente installato e non resta che la messa in funzione finale e il controllo elettrico.

Crea una checklist delle attività da svolgere e degli strumenti necessari. Utilizza la documentazione tecnica esistente dell'impianto solare termico e i materiali specifici come riferimento.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Co-funded by

the European Union

Ordine 2.1)

Informatevi sulle misure necessarie per il collaudo elettrico dell'impianto solare termico. Limitatevi al collaudo metrologico dell'interruttore magnetotermico e dell'interruttore differenziale.

Ordine 2.2)

Creare una checklist utilizzabile per la messa in servizio di un impianto solare termico. La checklist deve indicare chiaramente l'ordine in cui devono essere eseguite le singole fasi di lavoro. Deve inoltre indicare chi è autorizzato a eseguire la misurazione e quali qualifiche deve possedere la persona incaricata.

Orizzonte di aspettativa:

NO.	Descrizione dell'attività	Chi?	Varie
1	Applicazione delle 5 regole di sicurezza per i	AM / E	Rubinetto per doccia
	lavori elettrici.		
2	Ispezione della pompa solare:	Е	
	- Controllo del collegamento elettrico		
	- Verificare che la sezione del cavo corrisponda		
	alla potenza elettrica della pompa		
	- Scollegamento della pompa dalla centralina		
3	Ispezione dell'unità di controllo:	E	
4	Ispezione del sensore del collettore:	E	
5	Accensione del sistema principale	AM / E	
6	Controllo di possibili messaggi di errore	SONO	
7	Esecuzione del test dell'attuatore attivando i	SONO	
	componenti elencati		
8	Controllo del funzionamento del sistema	SONO	
	valutando diversi stati operativi (a seconda		
	della fattibilità e delle condizioni		
	meteorologiche)		

Leggenda:

SONO = Meccanico di sistema

E = Elettricista

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.

Sottomodulo 2: Risoluzione dei problemi su un sistema solare termico

In questo modulo di apprendimento si pianifica l'installazione e la messa in funzione di un impianto solare termico per la fornitura di calore efficiente dal punto di vista energetico di un nuovo edificio residenziale e si elaborano modelli di guasto comuni ed esemplari degli impianti solari termici. Per risolvere i problemi descritti nei moduli sono richieste competenze derivanti da diverse professioni. Per completare con successo il modulo di apprendimento, sono richieste competenze provenienti da diverse professioni. Per questo motivo, le competenze tradizionali di un mestiere vengono integrate da competenze provenienti da altri mestieri.

Il modulo di apprendimento è suddiviso in un modulo principale e due sottomoduli opzionali al fine di raggiungere le competenze mirate e sviluppare i contenuti tecnici. Ogni modulo prevede un compito, suddiviso in diverse sottoattività a cui gli studenti lavorano nell'arco di diverse ore. I moduli di apprendimento sono organizzati come segue:

Modulo principale:

"Progettazione e messa in funzione di un impianto solare termico"

Contenuto:

- Componenti meccanici ed elettrici e funzioni dell'impianto solare termico
- Realizzazione di uno schema funzionale dei componenti meccanici ed elettrici dell'impianto solare termico

Tempo: circa 6 ore

Livello: EQF 4

Nel modulo principale vengono perseguiti i seguenti obiettivi didattici:

- Familiarizzazione con le interfacce tra i mestieri.
- Comprendere gli elementi meccanici ed elettrici più importanti di un impianto solare termico e le loro funzioni.
- Scopri come visualizzare in modo professionale un impianto solare termico (elettrico e meccanico) e analizzare la documentazione del produttore.
- Selezione del cavo di collegamento (numero di fili, tipi di cavo se necessario)

Sottomodulo 1:	Sottomodulo 2:		
Messa in servizio finale dell'impianto solare termico	Risoluzione dei problemi e dei conflitti sull'impianto solare		
	termico		
Contenuto:	Contenuto:		
- Controllo dei dispositivi di sicurezza elettrica (RCD, MCB)	- Problema 1: Pompa solare bloccata a causa della corrosione		

- Prova di funzionamento dell'impianto solare termico mediante prova dell'attuatore e prova di funzionamento

Tempo: circa 2 ore

EQF 4

Inserisci collegamento al sottomodulo

- Problema 2: mancanza di riscaldamento del sistema

- Problema 3: Guasto nell'alimentatore

Tempo: circa14ore

EQF 4

Inserisci collegamento al sottomodulo

Sequenza di	Descrizione e materiale	Come si usa?
insegnamento	Breve descrizione e link a PDF/strumenti digitali/ecc.	Spiegazioni metodiche e didattiche (circa 10 frasi come primo orientamento) + link ad ulteriore documentazione, se applicabile (PDF)
Scenario introduttivo	Introduzione della situazione di apprendimento (ad esempio) Nel frattempo, l'impianto solare termico è stato completamente installato, testato e messo in funzione. Dopo un anno, si procede alla manutenzione dell'impianto solare termico. Ti accorgi che la pompa solare non funziona correttamente (vedi messaggio qui sotto!). Rimuovendo la pompa, noti che è bloccata e che il fluido solare è cambiato notevolmente. Il pH del fluido solare è sceso a pH=4.	 Questa situazione di apprendimento è rivolta agli elettricisti o alle classi miste di elettricisti e idraulici. Gli studenti sono divisi in gruppi interdisciplinari in cui lavorano insieme. Se idraulici ed elettricisti sono nella stessa classe, hanno l'opportunità di imparare gli uni dagli altri. Se non è possibile combinare i due mestieri, è possibile insegnarli anche separatamente,

	Alla domanda, il cliente descrive il funzionamento del sistema	mettendo a disposizione il materiale informativo
	dalla messa in servizio:	dell'altro mestiere.
	- La prima estate è stata molto calda, con molte ore di	- Conoscenze pregresse:
	sole. In molte giornate estive, il calore solare	Contenuti didattici del modulo principale
	disponibile era superiore a quello che il cliente poteva	"Progettazione e messa in servizio di un impianto
	utilizzare. Pertanto, il sistema si spegneva spesso	solare termico"
	anche quando splendeva il sole.	Link: "Sottomodulo 3.1 - Ordine di risoluzione dei
	- L'inverno successivo ci furono pochissime ore di sole,	problemi"
	quindi il sistema non fu in funzione durante i mesi	Procedura:
	invernali.	4) L'insegnante presenta la situazione e organizza
	Il tuo compito è descrivere per iscritto al cliente come si	i gruppi.
	sarebbe potuto verificare il cattivo stato del sistema. Dovrai	5) Nei loro gruppi, gli studenti considerano come
	anche fornire al cliente un elenco di suggerimenti su come	verrà elaborato il compito e sviluppano un'idea
	ridurre al minimo questi problemi in futuro.	iniziale della portata del compito
	Durata: 0,5 ore	6) Raccolta di idee in plenaria e accordo su un
		approccio comune nonché sulla qualità e la
		portata del prodotto da realizzare
		(suggerimenti per il cliente per migliorare il
		funzionamento del sistema).
Compiti	Procedura:	- L'obiettivo di questa fase didattica è che i singoli
		gruppi lavorino in modo indipendente sui compiti
		assegnati.

Co-funded by

- 9) Visione del materiale informativo sull'impianto solare termico e dei manuali didattici. Selezione e compilazione delle informazioni richieste da parte dei tirocinanti. Durata: 1,0h
- 10) Creazione di una descrizione degli effetti della radiazione solare sulle condizioni della pompa solare
- 11) Sviluppo di possibili raccomandazioni d'azione per il cliente, per un utilizzo migliore a lungo termine dell'energia solare termica e per evitare la stagnazione. Durata: 1,0h

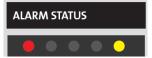
- Gli studenti si informano utilizzando il materiale informativo e la letteratura specializzata forniti.
- L'insegnante è disponibile a rispondere a domande e a fornire supporto durante la fase di lavoro individuale. Eventuali domande vengono discusse all'interno dei gruppi e gli studenti si supportano a vicenda, soprattutto per quanto riguarda le domande specifiche per materia.
- La descrizione delle cause della corrosione e delle modifiche del mezzo di trasferimento del calore può essere creata sotto forma di elenco o in un testo continuo utilizzando termini tecnici.
- Oltre alle cause della stagnazione, la descrizione individuale dei gruppi dovrebbe includere anche le misure idonee adottate dal cliente per evitarla.
- Per l'apprendimento, si consiglia di utilizzare i manuali standard di meccanica dei sistemi e il materiale informativo fornito. Questa situazione di apprendimento può essere utilizzata in regioni con irraggiamento solare medio-alto, in cui nei mesi invernali si registrano temperature esterne inferiori a 0 °C, per cui è necessario utilizzare

Presentazione	12) Un gruppo presenta il proprio prodotto in sessione	l'antigelo come fluido termovettore nell'impianto solare termico. - Per tenere conto di ulteriori differenze regionali, gli insegnanti interessati dovranno, se necessario, integrare ulteriore materiale informativo. - I documenti per questo modulo didattico sono disponibili al seguente link: Sinistra: "3.1 Sottomodulo - Ordine di risoluzione dei problemi" "3.1 Sottomodulo - Risoluzione dei problemi - Orizzonte di aspettativa" "3.1 Sottomodulo - Informazioni sul glicole"
Presentazione	plenaria, che viene proiettato sulla lavagna. Gli altri gruppi	
	forniscono feedback orientati ai punti di forza e formulano	
	congiuntamente suggerimenti per il miglioramento.	
	Durata: 0,5 ore	
	13) Gli studenti tornano nei gruppi e completano e	
	correggono i loro prodotti come richiesto	
	Durata: 0,5 ore	
Valutazione	14) I prodotti vengono raccolti e valutati dall'insegnante.	a 6)

	In alternativa, il contenuto dell'intera situazione di	La valutazione dovrebbe tenere conto dell'uso di
	apprendimento può essere verificato tramite un esame	termini tecnici e del numero di suggerimenti
	scritto.	significativi.
Riflessione/valutazion	15) Gli studenti discutono i limiti dell'energia solare termica in	Riguardo 7)
e	un dialogo tra studenti e insegnanti. 16) Chiarimento delle domande rimanenti.	- Si possono discutere possibili problemi di dimensionamento dell'impianto solare termico. Ad
	Durata: 0,5 ore	esempio, si potrebbe discutere del fatto che, da un
		lato, il cliente desidera generare il massimo rendimento solare possibile, ma dall'altro lato,
		l'impianto non dovrebbe essere dimensionato
		eccessivamente per evitare ristagni troppo frequenti.
		- Inoltre, in questa fase è possibile integrare i seguenti aspetti in un'ottica di sostenibilità:
		 Risparmio di risorse grazie all'utilizzo a lungo termine del fluido termovettore.
		 Rispetto delle normative ambientali per la manipolazione e lo smaltimento del glicole.
		- Migliore sfruttamento dell'energia solare
		attraverso un comportamento di utilizzo adattato.

Fonte: fobizz generato dall'intelligenza artificiale

Sottomodulo 2: Risoluzione dei problemi e dei conflitti sul sistema solare termico


7) La pompa solare non eroga più fluido solare

Scenario iniziale

Nel frattempo, l'impianto solare termico è stato completamente installato, testato e messo in funzione. Dopo un anno, si procede alla manutenzione dell'impianto solare termico. Ti accorgi che la pompa solare non funziona correttamente (vedi messaggio qui sotto!). Rimuovendo la pompa, noti che è bloccata e che il fluido solare è cambiato notevolmente. Il pH del fluido solare è sceso a pH=4.

Fonte: Viessmann (2008) Manuale di pianificazione solare termica, https://community.viessmann.de/viessmann/attachments/viessmann/customers-solar/139/1/Planungshandbuch%20Solarthermie.pdf; consultato il 25.02.2025

Fonte: Grundfos (2020) Istruzioni UPM3(K) Auto

Alla domanda, il cliente descrive il funzionamento del sistema dalla messa in servizio:

- La prima estate è stata molto calda, con molte ore di sole. In molte giornate estive, il calore solare disponibile era superiore a quello che il cliente poteva utilizzare.

 Pertanto, il sistema si spegneva spesso anche quando splendeva il sole.
- L'inverno successivo ci furono pochissime ore di sole, quindi il sistema non fu in funzione durante i mesi invernali.

Il tuo lavoro è quello di Descrivi per iscritto al cliente come si sarebbe potuto verificare il cattivo stato del sistema. Fornisci inoltre al cliente un elenco di suggerimenti su come ridurre al minimo questi problemi in futuro.

Fonte: fobizz generato dall'intelligenza artificiale

Sottomodulo 2: Risoluzione dei problemi e dei conflitti sul sistema solare termico

8) La pompa solare non eroga più fluido solare

Scenario iniziale

Nel frattempo, l'impianto solare termico è stato completamente installato, testato e messo in funzione. Dopo un anno, si procede alla manutenzione dell'impianto solare termico. Ti accorgi che la pompa solare non funziona correttamente (vedi messaggio qui sotto!). Rimuovendo la pompa, noti che è bloccata e che il fluido solare è cambiato notevolmente. Il pH del fluido solare è sceso a pH=4.

Fonte: Viessmann (2008) Manuale di pianificazione solare termica, https://community.viessmann.de/viessmann/attachments/viessmann/customers-solar/139/1/Planungshandbuch%20Solarthermie.pdf; consultato il 25.02.2025

Fonte: Grundfos (2020) Istruzioni UPM3(K) Auto

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Co-funded by

the European Union

Alla domanda, il cliente descrive il funzionamento del sistema dalla messa in servizio:

- La prima estate è stata molto calda, con molte ore di sole. In molte giornate estive, il calore solare disponibile era superiore a quello che il cliente poteva utilizzare.

 Pertanto, il sistema si spegneva spesso anche quando splendeva il sole.
- L'inverno successivo ci furono pochissime ore di sole, quindi il sistema non fu in funzione durante i mesi invernali.

Il tuo lavoro èDescrivi per iscritto al cliente come si sarebbe potuto verificare il cattivo stato del sistema. Fornisci inoltre al cliente un elenco di suggerimenti su come ridurre al minimo questi problemi in futuro.

Orizzonte di aspettativa / possibile soluzione:

Descrizione della causa:

Secondo la descrizione del cliente, l'estate del primo anno di funzionamento è stata molto favorevole, con molte ore di sole. Durante questo periodo, il calore solare spesso non è stato sfruttato appieno, il che ha portato l'impianto solare termico a stagnare. Di conseguenza, il fluido termovettore del collettore solare è evaporato, causando un cambiamento di colore, struttura e pH della miscela acqua-glicole (acida con pH <7). Il liquido acido ha causato corrosione nel sistema, causando la "ruggine" della pompa.

Possibili soluzioni:

Per evitare o almeno ridurre la stagnazione nei mesi estivi, consiglierei al cliente di adattare il proprio comportamento d'uso. Ad esempio, sarebbe opportuno utilizzare l'acqua calda quando splende il sole e l'apporto di calore solare è elevato.

Ciò consentirebbe al cliente di fare la doccia/il bagno a mezzogiorno o alla sera, quando il sole è forte, anziché al mattino, quando il cilindro si è raffreddato. Sarebbe inoltre possibile collegare la lavatrice e la lavastoviglie all'acqua calda e utilizzarle, eventualmente con la funzione timer, anche durante i periodi di forte irraggiamento solare. Questo raffredderebbe l'accumulo di calore e contrasterebbe eventuali stagnazioni.

Sarebbe anche possibile ombreggiare i collettori per periodi più lunghi senza richiesta di calore, ad esempio quando il cliente è in vacanza.

Fonte: fobizz generato dall'intelligenza artificiale

Sottomodulo 2: Risoluzione dei problemi e dei conflitti nei sistemi solari termici

La pompa solare non fa più circolare il fluido solare

Informazioni - Miscela acqua-glicole

Il fluido termovettore nel circuito solare trasporta il calore dal collettore al serbatoio di accumulo dell'acqua calda. Nei tubi del collettore solare (assorbitore), si riscalda e trasferisce il calore all'acqua calda sanitaria nel serbatoio di accumulo tramite lo scambiatore di calore. Quando il serbatoio di accumulo è completamente carico, non è possibile assorbire ulteriore energia solare. In questo caso, la pompa solare si spegne e il fluido termovettore rimane fermo nel collettore. Poiché il sole continua a riscaldare il collettore, il fluido evapora. Durante questa fase di stagnazione, nel sistema solare si raggiungono le temperature e le pressioni più elevate.

Per evitare che il fluido termovettore congeli in inverno e danneggi le tubazioni, viene utilizzata una miscela di acqua e glicole come antigelo. Tuttavia, questa miscela si degrada nel tempo. Un tampone basico mantiene stabile il valore del pH (> 7,0) per prevenire la corrosione nel circuito solare. In condizioni normali, il fluido termovettore dura fino a dieci anni, ma è consigliabile controllarne regolarmente il pH.

Le alte temperature (a partire da 170 °C) possono scomporre ("crackare") il glicole, causando la formazione di acido e un aumento della corrosione. L'ossigeno nel sistema accelera questo processo e può causare depositi nel circuito solare. Studi scientifici dimostrano che i sistemi con perdite dovute all'ingresso di ossigeno sono più problematici delle alte temperature dovute alla stagnazione.

> Co-funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not

necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA).

Per i sistemi con lunghi periodi di inattività, come quelli a supporto del riscaldamento solare, si raccomanda un'ispezione annuale. I contratti di manutenzione devono prevedere chiaramente questi aspetti.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Co-funded by